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Overview
•What is MCT?
•Multiphysics Models
•The Parallel Coupling 
Problem

•How MCT Enables Solutions 
to the Parallel Coupling 
Problem

•The MCT Programming 
Model

•An Illustrative Example
•Conclusions/Future



DOE ACTS Workshop, Berkeley, CA, August 23-26, 2005

The MCT Infomercial...

Man:  What are grits?
Waitress:  They’re fifty cents
Man:  But what are they?
Waitress:  They’re extra.
-from New Jersey Turnpike, USA I-IV 

by Laurie Anderson
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What is MCT?

• MCT := Model Coupling Toolkit

• A software toolkit for coupling message-
passing-parallel models into a single parallel 
coupled model

• An extension to MPI (yes, we are MPI-
specific--for now)
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Who Wrote MCT?

• According to Forrest Hoffman (ORNL) in a 
Linux Magazine column:  “...fearless 
programmers from Argonne National 
Laboratory”

• J. Larson and R. Jacob--lead developers, along 
with E. Ong (UW Madison), J. Guo (NASA 
GSFC), J. Mogill and C. Corey (Cray), and R. 
Loy (ANL)
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Why Was It Built?

• We needed it to build a fully message-passing 
parallel coupled climate model, the 
Community Climate System Model (CCSM)

• We felt this was an emerging problem of 
central importance in computational science

• Somebody was willing to pay for it
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Who Paid for It?
• Department of Energy Office of Science

• Specifically the DOE Office of Biological and 
Environmental Research

• Through the Climate Change Prediction Program 
(CCPP), which is part of DOE’s Scientific Discovery 
through Advanced Computing SciDAC program

• Funded 2000-present to support development of 
CCSM, which DOE uses to perform USA’s climate 
change assessment studies
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How Can I Get It?
• Open source--MCT is available for free and 

freely available from the MCT Web site

http://www.mcs.anl.gov/mct

• MCT is highly portable and will build and run 
on most unix systems with most compilers.  
This includes most commodity Linux clusters 
and also vector supercomputers such as the 
Cray X-1, NEC SX- series (including the 
Earth Simulator), and Fujitsu VPP.
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MCT 2.1.0 Distribution
• Build system based on autoconf

• Coded in Fortran90, approximately 51 kLOC

• Distribution contains

• mpeu -- Message Passing Environment Utilities

• mct -- the toolkit itself

• examples

• simple -- single-source-file codes containing two components 
with sequential and concurrent component scheduling

• climate_concur1 -- two-component example using concurrent 
scheduling

• climate-sequen1 -- two-component example using sequential 
scheduling
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Two Major MCT Applications
• Community Climate System Model CCSM 3.0

• Flux coupler CPL6 -- Parallel “glue” to exchange data between parallel 
atmosphere, ocean, sea ice, and land models

• Implemented as a toolkit that extends MCT

• Used in ~11,000 model years’ production runs and runs submitted to 
latest UN-sponsored Intergovernmental Panel on Climate Change 
assessment 

• Weather Research and Forecasting (WRF) Model

• Parallel Coupling API

• Implemented as a parallel I/O mechanism

• Available separately from WRF on MCT Web site

• Has been run successfully in a computational grid environment
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Q.  What’s in it for me?
A.  The kind of modeling 
we really want to do...
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...Is Multiphysics and/or 
Multiscale in Nature...

e.g., a hurricane
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NWP for a Hurricane
(if done all at once)

Global Atmosphere Regional Atmosphere

Regional OceanGlobal Ocean

Atmosphere-Surface Fluxes

Lateral Boundary Conditions

Observations / Analysis

Data Assimilation
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Complexity Barriers
Traditional approach:  Model individual subsystems of a greater whole in 
isolation

• Idealize interactions with outside world using prescribed data or 
simplified physics 

• Why?  Three complexity barriers to overcome:

• Knowledge, a consequence of specialization

• overcome through interdisciplinary teams

• Computational, i.e., getting all the math done

• overcome by faster processors, better algorithms, and parallel 
computing

• Software:  build system, language barriers, interactions between 
physics packages

Message-passing parallelism creates a new software complexity barrier:  the 
parallel coupling problem (PCP)
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Parallel Coupling Problem
Given:  N mutually interacting models (C1,C2,...CN), 
each of which may employ message-passing parallelism

Goal:  Build an efficient parallel coupled model

Aspects of the problem:

• Architecture

• Parallel data processing

• Environment--important, beyond scope of current 
discussion

• Language barriers

• Build issues
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Architectural Aspects
Two sources that shape parallel coupled models:

• Science of the system under study:
• Connectivity--who talks to whom?
• Domain overlap--lower-dimensional vs. colocation
• Timescale separation/interaction & domain overlap
• Coupling event scheduling (e.g., periodic?)
• Tightness

• Implementation choices:
• Resource allocation
• Scheduling of model execution
• Number of executable images
• Mechanism



Dynamic Resource Allocation

Strategy
Intra-

component
Inter-

component Global

Level 0
(Static) Static Static Static

Level 1 Dynamic Static Static

Level 2 Dynamic Dynamic Static

Level 3 Dynamic Dynamic Dynamic



Requirements Stemming 
from Dynamic Load Balance

Cumulative growth in requirements as constraints on 
scheduling and resource allocation are loosened:
Level 0:  No additional requirements
Level 1:  Fast handshaking between components to cope 
with changing decompositions between coupling events
Level 2:  Ability of framework or coupling mechanism to 
checkpoint models and re-instantiate/restart them on 
their new processor pools
Level 3:  Ability of underlying communications mechanism 
to cope with dynamically varying global resource pool 
(e.g., dynamic MPI_COMM_WORLD)



Tightness vs. Looseness
A logical starting point is the cost break-down structure 
for the coupled model.  Define the load matrix L as

The tightness of an individual model’s coupling to the 
rest of the system is

The overall tightness of a coupled system is the ratio of 
its coupling costs to total costs
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Parallel Data Processing
• Description of data to be exchanged during coupling

• Physical fields/variables

• Mesh or representation associated with the data

• Domain decomposition

• Transfer of data--a.k.a. the MxN problem

• Transformation of data

• Intermesh interpolation/transformation between 
representations

• Time transformation

• Diagnostic/variable transformations

• Merging of data from multiple sources
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MCT is a Collection of Classes...

...where “class” is used following Decyk et al. (1996,1997) 

Data Transformation

Data Description

Data TransferKEY

AttrVect GlobalSegMap

GeneralGridAccumulator SparseMatrix

SparseMatrixPlus

MCTWorld

Router

Rearranger
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MCT’s Universe of Discourse
• Support coupling of MPI-based MPP models

• Data transfer using a peer commmunication 
model

• Description of physical meshes and associated field data 
through linearization

• Data transfer and transformation are viewed as multi-
field, pointwise operations

• We leave numerous, high-level operations to the user’s 
discretion (e.g., choice of linearization and interpolation 
schemes), while concentrating on automation of 
complex (but important!) low-level operations
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Coupling as Peer 
Communication

• MCT’s organizing principle is the component model, or 
component (not same as CORBA, CCA, ESMF, 
JavaBeans)

• An MCT component is merely a model that is part of 
the larger system and participates in coupling

• In MCT, components interact directly as peers

• The user codes these connections into the model 
source
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Linearization of Multi-
Dimensional Space

• Linearization (first used in MxN schemes by UMD’s 
METACHAOS) is the mapping from an n-tuple index 
space to a single global location index

• This approach allows for a single representation of 
grids/arrays of aribtrary dimension
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A Simple Linearization Example

2 3 4 5

6 7 8 9 10

1

11 12 13 14 15

16 2017 18 19
PROC 1

PROC O

• 2D Cartesian mesh

• 2 Processors

• Numbering varies fastest in x-direction
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Pointwise Operations
• FACT:  Most coupling between components 

involves multivariate exchanges (e.g., ~10-12 
fields between atmosphere and ocean in a 
climate model)

• Consolidating operations on data to be 
exchanged can result in performance boosts 
due to better cache re-use and lowered MPI 
latency charges

• In MCT, implementation choices (primarily 
storage order) have been made to exploit this 
situation
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Automating (Most of) the 
Tough Stuff

• We leave coupled model architecture decisions to the user

• We aim to be minimally invasive--user still owns main(), still calls 
MPI_Init(), et cetera...

• The user decides how and when to couple

• The user must describe application grids and decompositions using 
MCT’s GeneralGrid and GlobalSegMap classes

• The user must pack coupling data in AttrVect form

• MCT’s library routines do the heavy lifting
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Data Description:  
Domain Decomposition

• Embodied in the GlobalSegMap class

• Linearization creates a single unique index for each 
location, and runs of consecutive indices--or segments--are 
stored by start index, segment length, and processor ID on 
which it resides (on the component’s communicator)

• Capable of supporting arbitrary decompositions and  
haloed decompositions

• Support for global-to-local and local-to-global index 
translation
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Data Description:  
Physical Meshes

• Embodied in the GeneralGrid class

• Linearization implies this class stores real and integer 
attributes of individual mesh points

• Coordinates, length, cross-sectional area, and volume 
elements, integer and real masks, grid indices

• Able to describe meshes of arbitrary dimensionality and 
also unstructured meshes

• Method support for sorting points in lexicographic order 
by coordinates and/or other attributes
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Data Description:  Field Data
• Embodied in MCT AttrVect class, which is similar to 

Trilinos multi-vector

• Allows storage of both integer and real attributes

• In implementation, major index is field index, keeping in 
line with pointwise approach

• Attributes are accessed via use of string tokens

• Lists of attributes are set at initialization, which allows 
run-time binding of what fields are stored

• Numerous query and manipulation methods including 
importing and exporting attributes and MergeSort keyed 
by attributes
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Data Transfer:  Registration

• Singleton class MCTWorld holds a lightweight 
component registry

• Components are registered with a component ID

• MCTWorld contains a rank translation table that 
allows a component to message another remote 
component by using information from its local 
domain decomposition descriptor (i.e., we do not 
construct nor use intercommunicators)
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Data Transfer:  
Communications Scheduling

• Scheduling for one-way parallel data transfers 
are handled by the Router class

• Scheduling for two-way parallel data transfers 
and parallel data redistributions are handled 
by the Rearranger class, which comprises 
two Routers
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Data Transfer:  Execution
• MxN Communications between components are carried out by library 

routines MCT_Send() and MCT_Recv(), both of which have (overall) 
blocking and non-blocking versions

• Overall blocking--Prevents concurrently scheduled components from 
outrunning each other

• Overall nonblocking--allows for same communications approach to 
be used for sequentially scheduled components

• N.B.:  non-blocking MPI operations are used for the individual point-
to-point messages within the MxN transfer operation

• MxM redistributions are handled by the MCT library routine 
Rearrange()

• Contains logic to prevent self-messaging (does a copy instead)
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Data Transformation:  
Intermesh Interpolation

• MCT’s linearization-based worldview casts interpolation as a linear transform and thus 
implementable as a matrix-vector multiply

• In practice, these interpolation matrices are quite sparse

• MCT’s SparseMatrix class provides storage for nonzero matrix elements in COO 
format

• Method support includes query methods, computation of sparsity, sorting methods to 
aid matrix decomposition and to boost performance

• Library function performs multiplication y = Mx, where x and y are of AttrVect type, 
and this function performs automatic token-based matching of attributes

• Main implementation targets commodity cache-based processor platforms, and MCT’s 
pointwise operation view makes good re-use of cache

• Modifications for vector platforms also included
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3 Ways to Parallelize y = Mx
Based on x

(y is shorter than x)
Based on y

(x is shorter than y)
Other 

(e.g. Based on M)
1) Use local data to form 
(embarassingly parallel) 
partial sums y’

y’ = Mx

2) Communicate to 
reduce partial sums y’ to 
final product y

1) Gather pre-image of y  
x’ from x

2) Compute the product
y = Mx’

(embarassingly parallel) 

1) Gather pre-image of y  
x’ from x

2) Compute the partial 
sums

y’ = Mx’
(embarassingly parallel) 

3) Communicate to 
reduce partial sums y’ to 
final product y
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MCT’s Parallel Linear 
Transformation

• MCT provides the SparseMatrixPlus class, which 
encapsulates everything needed for a sparse linear transform

• This class includes Rearrangers to schedule communications 
and a SparseMatrix to store matrix elements

• Library routine to compute y = Mx in parallel, again where 
x and y are of AttrVect type, and automatic token-based 
matching of attributes is performed

• Support for both commodity and vector processors
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Data Transformation:  
Time Accumulation

target

t = tc

source

target

t = tc

source

target

t = tc

source

target

t = tc

source

target
(e)

c

source
(a)

(b)

(c)

(d)

t = t

•Time evolution of multi-component systems can 
involve data exchanges of  instantaneous or/or 
integrated data

•For instantaneous exchanges, use of one or more 
AttrVects is sufficient

•For integrated data exchanges, MCT offers 
accumulation registers in the form of the 
Accumulator class, and the accumulate() library 
routine

•The Accumulator provides registers for time 
integration and averaging of data, and keeps track of 
progress over an accumulation cycle

•The accumulate() library routine works with 
AttrVect and Accumulator arguments, and 
automatically cross-indexes and accumulates 
attributes with matching tokens
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Other Services--Spatial 
Integration and Averaging

• MCT provides routines for computing spatial integrals and 
averages

• These routines are included to diagnose (and if wished, even 
enforce) conservation of integrals in the interpolation process

• Library routines operate on AttrVect objects

• Spatial weight elements and masks can be provided either in 
GeneralGrid or array form

• Paired integral/average routines to compute integrals 
simultaneously on source and target grids to minimize global 
sum latency costs
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Other Services--Merging of 
Data from Multiple Sources
• Often one must combine outputs from multiple components 

for use as input for another component (e.g., fluxes/states 
from ocean, land, and sea-ice for use by atmosphere)

• MCT provides a Merge facility, which is a set of routines to 
combine multiple AttrVect data streams into a single AttrVect 
result

• Real and Integer masks for the merge can be supplied either in 
GeneralGrid or array form

• Automatic token-based attribute matching
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MCT Programming Model
Based on Fortran90, but we are 
beginning to support other languages.

• Use modules for access to MCT 
classes and methods

• Declare variables of MCT datatypes

• Invoke MCT library routines to 
accomplish parallel coupling 
operations
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A Simple Example, 
Where Simple is a 

Relative Term
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A (Sort of) Simple Example
• Three Components

• Coupler component handles 
data transformation

• Interpolation

• Time averaging

• Components communicate 
with coupler

• Atmosphere hourly

• Ocean daily

Atmosphere

Coupler

Ocean
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Further Details and 
Simplifying Assumptions

• Atmosphere and Ocean employ simple 2D latitude/longitude grids at surface

• Atmosphere:  aLats x aLons = NatmPts

• Ocean:  oLats x oLons = NocnPts

• Coupler uses the same decomposition for Atmosphere for all of its 
processing

• Coupler uses the same decomposition for the Ocean for all of its processing

• Atmosphere outputs same fields that coupler receives as input and vice-versa

• Ocean outputs same fields that coupler receives as input and vice-versa
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 program ATMorOCN
.
.
.
  use m_MCTWorld
  use m_GeneralGrid
  use m_GlobalSegMap
  use m_AttrVect
  use m_Router
  use m_Transfer
  use m_Accumulator
.
  implicit none
.

Module Use (ATM, OCN)
Component Registry

Domain Decomposition 
Descriptor

Exchanged Field Data Storage

MxN Comms Scheduler

MCT MxN Transfer Routines

Physical Mesh Descriptor

Time Integration Registers
(Ocean Only)
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 program Coupler
.
.
.
  use m_MCTWorld
  use m_GeneralGrid
  use m_GlobalSegMap
  use m_AttrVect
  use m_Router
  use m_Transfer
  use m_SparseMatrix
  use m_SparseMatrixPlus
  use m_MatAttrVectMul
  use m_Accumulator
.
.
  implicit none
.

Module Use (Coupler)
Component Registry

Physical Mesh Descriptor

Domain Decomposition Descriptor

Exchanged Field Data Storage

MxN Comms Scheduler

MCT MxN Transfer Routines

Interpolation Weight Storage

Parallel Interpolation Matrix Object

Parallel Matrix-Attribute Vector Multiply

Time Averaging/Integration Registers
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Declaration (Atmosphere)

! Domain decomposition descriptor for Atmosphere
  Type(GlobalSegMap) :: AtmDecomp
! MCT description of Atmosphere grid
  Type(GeneralGrid)  :: AtmMesh
! MCT storage for outgoing/incoming field data
  Type(AttrVect)  :: Atm2Cpl, Cpl2Atm
! MCT Comms scheduler for MxN to/from Coupler
  Type(Router)  :: AtmCplSchedule
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Declaration (Ocean)

! Domain decomposition descriptor for Ocean
  Type(GlobalSegMap) :: OcnDecomp
! MCT description of Ocean grid
  Type(GeneralGrid)  :: OcnMesh
! MCT storage for incoming/outgoing field data
  Type(AttrVect)  :: OcnFromCpl, OcnToCplInst
! MCT Comms scheduler for MxN to/from Coupler
  Type(Router)  :: OcnCplSchedule
! Time Averaging/Integration registers for output
  Type(Accumulator)  :: OcnToCplAccum
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Declaration (Coupler)
! Domain decomposition descriptors for Atm/Ocn
  Type(GlobalSegMap) :: AtmCplDecomp, OcnCplDecomp
! MCT description of Atmosphere and Ocean grids
  Type(GeneralGrid)  :: AtmMesh, OcnMesh
! MCT storage for field data to be processed
  Type(AttrVect)  :: CplToAtm, CplToOcn, CplFromOcn, CplFromAtm
! MCT comms scheduler for MxN to/from Coupler
  Type(Router)  :: CplAtmSchedule, CplOcnSchedule
! Time averaging/integration registers for output
  Type(Accumulator)  :: AtmToOcn
! Storage for interpolation matrix elements
  Type(SparseMatrix)  :: A2OMatElements, O2AMatElements
! Parallel interpolation matrix-AttrVect multiply objects
  Type(SparseMatrixPlus)  :: A2OparXform, O2AparXform
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Invocation:  MCT Initialization
• Purely concurrent component scheduling--each component on 

its own pool of processors

• Shown for Atmosphere, but is representative

• MCT component IDs:  Atmosphere=1, Ocean=2, Coupler=3

• Works for either single or multiple executable application
...
! MPI initialization
  call MPI_INIT(MPI_COMM_WORLD, ierr)
! Split MPI_COMM_WORLD to get atmosphere communicator AtmComm
...
  compID = 1 
! Initialize MCT World Registry
  call MCTWorld_init(1,MPI_COMM_WORLD, AtmComm, compID)
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Invocation:  MCT Initialization
• Purely sequential component scheduling--each component on its 

own communicator, which is a copy of MPI_COMM_WORLD

• MCT component IDs:  Atmosphere=1, Ocean=2, Coupler=3

• Shown for driver that calls Atmosphere, Ocean, and Coupler
! MPI initialization
  call MPI_INIT(MPI_COMM_WORLD, ierr)
! Copy MPI_COMM_WORLD to get atmosphere communicator AtmComm,
! ocean communicator OcnComm, and coupler communicator CplComm
...
! Set component IDs 
  compIDs(1) = 1 ! Atmosphere
  compIDs(2) = 2 ! Ocean
  compIDs(3) = 3 ! Coupler
! Initialize MCT World Registry
  call MCTWorld_init(3,MPI_COMM_WORLD, AtmComm, compIDs)
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GlobalSegMap Initialization

! Initialize Atmosphere GlobalSegMap
  call GlobalSegMap_init(AtmDecomp, starts, lengths, root, &
                         AtmComm, AtmCompID)

• Shown for Atmosphere, but representative

• Arguments

• starts(:) - Integer array of starting indices (global) for each segment

• lengths(:) - Integer array of segment lengths

• root - Integer, rank of root process on component’s local 
communicator AtmComm

• AtmCompID - Integer, MCT component ID number
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AttrVect Initialization
• Shown for Ocean output to Coupler, but representative

• Attributes (second and third string arguments, respectively):

• Integer:  Latitude, Longitude, and Linearized indices (all global) 

• Real:   Temperature, east component of current, north component of 
current, EW gradient of surface height, NS gradient of surface height, and 
heat flux

• nOcnLocal - Number of points on this processor’s chunk of ocean grid

• N.B.:  This call constructs the AttrVect; data is filled in separately

! Initialize Ocean Output AttrVect Ocn2CplInst
  call AttrVect_init(Ocn2CplInst, ‘LatInd:LonInd:LinInd’, &
                     ‘T:u:v:S:dhdx:dhdy:Q’, nOcnLocal)
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Router Initialization for 
Atmosphere/Coupler MxN

! Initialize Coupler-to-Atmosphere Router
  call Router_init(AtmCompID, AtmCplDecomp, CplComm, &
                   CplAtmSchedule)

! Initialize Atmosphere-to-Coupler Router
  call Router_init(CplCompID, AtmDecomp, AtmComm, &
                   AtmCplSchedule)

In the Atmosphere:

In the Coupler:

Router

Router
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SparseMatrix Initialization

  call SparseMatrix_init(A2OMatElements, nrows, ncols, lsize)
  call SparseMatrix_importGlobalRowIndices(A2OMatElements, grows, lsize)
  call SparsMatrix_importGlobalColumnIndices(A2OMatElements, gcols, lsize)
  call SparseMatrix_importMatrixElements(A2OMatElements, weights, lsize)

• MCT does not currently generate interpolation weights on-line

• Instead, we rely on other tools to generate them off-line, or at start-up

• Suppose we have a sparse interpolation matrix M whose elements are specified in COO 
format by three arrays:

• grows(:) - integer, global row indices

• gcols(:) - integer global column indices

• weights(:) - real matrix entries

• For this example, we are calling this routine only on the coupler’s root process; lsize is the 
number of nonzero elements
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SparseMatrixPlus Initialization

  call SparseMatrixPlus_init(A2OParXform, A20MatElements, &
                             AtmCplDecomp, OcnCplDecomp, &
                             MvMultDecompStrategy, CplRoot, &
                             CplComm, CplCompID, Tag)

• Shown for Coupler’s Atmosphere-to-Ocean transformation

• Uses SparseMatrix object A2OMatElements created on previous slide

• MvMultDecompStrategy is the parallelization strategy choice, which is one of

• row-based

• column-based

• matrix-based (e.g., use graph partitioning for load balancing the multiply)

• N.B.:  This call constructs and fills in the SparseMatrixPlus
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Accumulator Initialization

! Initialize Ocean Output Accumulator Ocn2CplAccum
  call Accumulator_init(Ocn2CplAccum, rList=‘T:u:v:S:dhdx:dhdy:Q’, &
                        rAction=rActions, lsize=nOcnLocal, &
                        num_steps=72, steps_done=0)

• Shown for Ocean output to Coupler, but representative

• Only real attributes are being accumulated

• rAction - integer array of processing action MCT_SUM (0, summation) or MCT_AVG (1, 
average assuming uniform time weighting)

• For this example, rAction = (1 1 1 1 1 1 0)

• nOcnLocal - Number of points on this processor’s chunk of ocean grid

• num_steps - number of steps in an accumulation period (1 day with 20 minute ocean 
timestep)

• steps_done - set to zero if we are beginning at the start of an accumulation period

• N.B.:  This call constructs the Accumulator; data is filled in separately
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MxN Transfer ATM to CPL 
(Blocking)
In the Atmosphere:

In the Coupler:

! Send Attributes in Atm2Cpl to Coupler
  call MCT_Send(Atm2Cpl, AtmCplSchedule, Tag)

! Receive Attributes in CplFromAtm from Atmosphere
  call MCT_Recv(CplFromAtm, CplAtmSchedule, Tag)
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MxN Transfer ATM to CPL 
(Non-Blocking)

In the Atmosphere:

In the Coupler:

! Send Attributes in Atm2Cpl to Coupler
  call MCT_ISend(Atm2Cpl, AtmCplSchedule, Tag)
...
  call MCT_WaitSend(AtmCplSchedule)

! Receive Attributes in CplFromAtm from Atmosphere
  call MCT_IRecv(CplFromAtm, CplAtmSchedule, Tag)
...
  call MCT_WaitRecv(CplAtmSchedule)
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Parallel Interpolation in the 
Coupler (Atm to Ocn)

! Perform parallel sparse matrix-attribute vector multiply: 
  call sMatAvMult(CplFromAtm, A2OParXform, CplToOcn)

• Message-passing parallel matrix-vector multiply to 
interpolate Atmosphere real fields onto Ocean real 
fields

• As usual in MCT, automatic token-based attribute 
matching coordinates the calculation
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Accumulation in Ocean

! Accumulate instantaneous ocean data in AttrVect OcnToCplInst into
! the accumulator OcnToCplAccum
  call accumulate(OcnToCplInst, OcnToCplAccum)

• Time averaging of states and summation of fluxes 
in the Ocean

• Performed every ocean timestep

• Accumulation period one model day, which 
matches the coupling period for this component

• As usual in MCT, automatic token-based attribute 
matching guides the calculation
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OK, So You Hate Fortran
• Work has begun to export MCT’s programming model to 

other languages

• Accomplished by leveraging CCA’s Babel language 
interoperability tool

• SIDL description of a restricted version of the MCT API

• Bindings for this API generated automatically for both C++ 
and Python

• Download ftp://mcs.anl.gov/pub/acpi/MCT/babel.tar.gz

• Foundation code for pyMCT  and pyCPL (U. Chicago)
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Conclusions
• MCT exists, is highly portable and robust

• MCT supports a linearization approach to coupling 
that is universally applicable to mesh-based systems

• MCT services support numerous modes of operation 
for coupled systems

• Purely sequential component scheduling

• Purely concurrent component scheduling (including 
multiple executables and computational grids)

• Combinations thereof
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Future Work
• Continue expanding the programming model to other languages 

using Babel

• Address explicitly one-dimensional approach and craft more 
convenient interfaces for multidimensional grids and arrays

• Speed up intercomponent handshaking to better support level 
intracomponent dynamic load balance

• Modify registry to support level intercomponent dynamic load 
balance (but somebody else can do the checkpointing)

• Include support for pure OpenMP and hybrid parallelism

• Move beyond linear transformations

• More sophisticated Merge facility
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FIN


